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1. Introduction

Integrability has played a key role in recent years exploration of planar N = 4 SYM [1 – 3]

as well as non-interacting type IIB string theory on AdS5 × S5 [4, 5], tied together by the

AdS/CFT correspondence [6]. Whereas integrability is expected to break down beyond

the planar/non-interacting limit — most clearly demonstrated by the lift of degeneracies

of anomalous dimensions in the gauge theory [2] — the AdS/CFT correspondence could

still be valid [6, 7]. Lacking the framework of integrability, tests of the AdS/CFT corre-

spondence beyond the planar limit have proved difficult. Even in the BMN limit [8] where

the free string theory can actually be quantized no conclusive tests exist. For an up to

date review, see [9]. The gauge theory calculations, although described efficiently by a

quantum mechanical Hamiltonian [10], are plagued by huge degeneracy problems [11]. The

string theory computations on their side suffer from the existence of several competing

proposals for the three string vertex of light cone string field theory and from the necessity

of truncating the vertex to a subset of decay channels. Although the BMN limit seems to

be the most tractable one as regards the analysis of the non-planar sector of the theories it

might be instructive to perform the analysis in other limits as well. A limit which has been

instrumental in the investigation of the planar/non-interacting case is the Frolov-Tseytlin

limit [12]. A first step in the direction of extending the analysis of this limit to the non-

planar/interacting situation was taken in [13] where the decay of a folded Frolov-Tseytlin
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string [14] was described using semi-classical methods. Based on the investigations per-

formed it was argued that the integrability observed for the free string may survive in

certain decay channels. In the present paper we attack the non-planar Frolov-Tseytlin

limit from the gauge theory side. Using a coherent state approach we calculate matrix

elements of the one-loop non-planar dilatation generator of N = 4 SYM between operators

dual to folded Frolov-Tseytlin strings rotating on S3 ⊂ S5 ⊂ AdS5 × S5.

We begin in section 2 by presenting the form of the one-loop non-planar dilatation op-

erator in the SU(2) sector of N = 4 SYM. Subsequently, in section 3 we review the coherent

state description of the operator dual to the folded Frolov-Tseytlin string. Section 4 deals

with the calculation of matrix elements for the gauge theory equivalent of string joining

and string splitting. In section 5 we describe a solvable toy model for the decay of the

folded string which unfortunately is only a very crude approximation to the actual model.

Finally, section 6 contains a discussion.

2. The one-loop non-planar dilatation operator

We consider the SU(2) sector of N = 4 SYM consisting of multi-trace operators built from

the two complex scalar fields Z and Φ. In this sub-sector the complete one-loop dilatation

operator can be expressed as [15, 2]

H = −g2
YM

8π2
Tr[Φ, Z][Φ̌, Ž], Ž =

δ

δZ
, (2.1)

or equivalently [16, 13]:

H = HP + HNP , (2.2)

where

HP = λ
∑

k

(1 − Pk,k+1), λ =
g2

YM
N

8π2
, (2.3)

and

HNP =
λ

N

∑

k, l 6=k+1

(1 − Pk,l) Σk+1,l, (2.4)

with HP being the planar part and HNP the non-planar one. Here the indices refer to

the position of the fields inside the operator on which H acts. The indices are periodically

identified as dictated by the trace structure of the operator. The operator Pk,l simply

interchanges indices k and l. Furthermore, if one represents an operator as a set of fields plus

a permutation element giving the ordering of the fields, then Σk,l is just the transposition

σk,l applied on this permutation [16]. A useful way of describing the effect of having acted

with Σk,l on a chain of fields is the following (see also figure 1):

The site that was going to k goes to l and vice versa.
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=Σkl
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l l

k

=Σkl
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l l

k

Figure 1: Splitting and joining of chains by Σkl.

3. Folded string duals using coherent states

3.1 The Frolov-Tseytlin folded string

We wish to consider operators dual to the folded Frolov-Tseytlin string spinning on S3 ⊂
S5 ⊂ AdS5 ×S5 with two large angular momenta (J1, J2). More precisely, we consider the

limit J1, J2 → ∞ with J1

J2
finite. A semi-classical analysis of the string in question yields

that its energy has the following expansion [14]

E = J

(

1 +
λ

J2
E0 +

λ2

J4
E(1)

0 + . . .

)

, J = J1 + J2, (3.1)

with the gauge coupling constant λ appearing via the AdS/CFT dictionary R2

α′ =
√

λ [6]

and where we also assume that λ
J2 is finite. The term of linear order in λ is found to be

E0 = 16K(m) (E(m) − (1 − m)K(m)) , (3.2)

where K(m) and E(m) are the complete elliptic integrals of the first and the second kind

respectively.1 The parameter m is determined by

J2

J
= 1 − E(m)

K(m)
. (3.3)

The gauge theory dual of the folded Frolov-Tseytlin string is a complicated linear

combination of single trace operators each containing J1 Φ’s and J2 Z’s [14, 17]. It is

characterized by being an eigenstate of the one-loop planar dilatation operator, HP , cf.

eq. (2.3), with eigenvalue given by λ
J E0. A more efficient way of describing the dual is

by means of SU(2) spin-1/2 coherent states. To introduce these, let us denote the two

normalized eigenstates of Sz by |↑〉 and |↓〉. These states have the inner product

〈↑| ↑〉 = 〈↓| ↓〉 = 1,

〈↑| ↓〉 = 〈↓| ↑〉 = 0.

1Here and in the following we use the Mathematica definition of elliptic functions and integrals.
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The relevant coherent states then take the form

|~n〉 = cos θ |↑〉 + e−i ϕ sin θ |↓〉 , (3.4)

where the angles θ ∈ [0, π
2 ] and ϕ ∈ [0, 2π] parametrize a unit three vector ~n by

~n = (cos 2θ sin ϕ, sin 2θ sin ϕ, cos ϕ) . (3.5)

The folded string dual can now be described as a state of a SU(2) spin chain of length J

having a coherent state vector at each site [18]. Without loss of generality we will take

J to be a multiple of four, in order for the spin chain to reflect as closely as possible the

symmetries of the folded string (the entire string profile follows from its definition on a

quarter period). The state representing the string thus reads

|n〉 =
∣

∣

∣~n−J
2

〉

⊗
∣

∣

∣~n−J
2
+1

〉

· · · ⊗
∣

∣

∣~n J
2

〉

, (3.6)

where obviously

|~nk〉 = cos θk |↑〉 + e−i ϕk sin θk |↓〉 . (3.7)

Here the planar energy of the string is obtained as λ
J E0 = 〈n|HP |n〉. In the long wavelength

limit where θk and ϕk vary only slowly and where J → ∞, which exactly corresponds to the

Frolov-Tseytlin limit, one can replace the θk and ϕk by continuous functions θk → θ(σ = k
J )

and ϕk → ϕ(σ = k
J ) and one can derive an effective sigma model action describing the

model. The cyclicity property of the gauge theory operator translates into the requirement

of vanishing momenta in the σ direction, which reads

Pσ = −1

2

∫ 1

2

− 1

2

cos(2θ)∂σϕdσ = 0 . (3.8)

The equations of motion following from the above mentioned action permit a solution

exactly describing the folded Frolov-Tseytlin string dual. For this solution one has

θ′
2 − ω

2λ
(cos 2 θ − cos 2 θ0) = 0, ϕ = ω t, (3.9)

which in particular is seen to fulfill the relation (3.8). The angle θ can be expressed in

terms of the Jacobi sn function

sin θ(σ) = sin θ0 sn

(

J

√

ω

λ
σ

∣

∣

∣

∣

sin2 θ0

)

, (3.10)

where the following relation between θ0 and ω must hold for the string to be closed and

folded exactly once

J

√

ω

λ
= 4K(m), m = sin2(θ0). (3.11)

The angular variable θ(σ) obviously varies in the interval [−θ0, θ0]. For any given θ0 one

has (or can impose) the following identifications, see figure 2 .

∀n ∈ N, ∀z ∈ R, θ(z + n) = θ(z) , θ

(

1

2
− z

)

= θ(z) . (3.12)
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Figure 2: Different values of θ = θ(σ) along the string.

In this formulation the one-loop anomalous dimension of the gauge theory operator is

given by [18]

E0 =

∫ 1

2

− 1

2

θ′(σ)2 dσ, (3.13)

and
J2

J
=

∫ 1

2

− 1

2

sin2 θ(σ) dσ. (3.14)

which are easily seen to reproduce eqs. (3.2) and (3.3).

3.2 Coherent state strings

The coherent state vectors |n〉 single out the endpoint of the folded string — a property

which is not natural from the dual gauge theory perspective as the dual operator must

be cyclically symmetric.2 This, in particular, becomes an issue when we wish to calculate

matrix elements between multi-cut states, cf. section 4.

We can ensure cyclicity of the state by averaging over cyclic translations:

|n〉〉 =
n

∑

k=1

Lm
∏

i=1

|−−→ni+k〉 . (3.15)

These averaged states, properly normalized, will now represent our string states. The inner

product is defined as follows. Given two vectors |n〉 =
∏

i=1,Ln
|−→ni〉 and |m〉 =

∏

j=1,Lm
|−→mj〉

one has

〈m|n〉 = δLm,Ln

Lm
∏

i=1

〈−→mi | −→ni〉 , (3.16)

from which the definition of 〈〈m|n〉〉 follows.

4. Matrix elements of HNP

With our new states we have
λ

J
E0 =

〈〈n|HP |n〉〉
〈〈n |n〉〉 . (4.1)

2As mentioned above, in the coherent state framework cyclicity manifests itself via the equation (3.8).
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We would now like to calculate matrix elements of the one-loop non-planar dilatation

operator between coherent state vectors representing folded Frolov-Tseytlin strings. It is

obvious that acting on a coherent state vector |n〉 with HNP gives rise to a splitting of a

one-string dual into a two-string dual. Similarly, acting with HNP on a direct product two

coherent state vectors |n〉 and |m〉 can produce a one-string dual from a two-string dual.

In a more traditional gauge theory language HNP gives rise to trace splitting and trace

joining. The matrix elements of the non-planar dilatation operator contain information

about the genus one correction to the energy of Frolov-Tseytlin strings. It is obvious,

however, that if we would try to determine this energy correction by considering HNP a

perturbation of HP we would have to make use of degenerate perturbation theory. For

instance, if we start from a coherent state vector |n〉 of energy E0 as given by eq. (4.1),

cut it vertically once and close the open ends we obtain another state which up to 1/J

corrections is an eigenstate with the same energy. The same is true if we make l vertical

cuts where l ≪ J , see figure 3. We could also cut with some, not too large, skewness and

still obtain a degenerate state. However, we will restrict ourselves to straight cut states

since in the continuum limit small skewness should not matter and large skewness takes us

out of the sub-space of degenerate states. We notice that since ϕ = ωt is constant along

the string the inner product between two coherent states reduces to

〈−→n 1|−→n 2〉 = cos(θ1 − θ2), (4.2)

which implies that we do not need to worry about ϕi at all and can consistently set ϕi = 0.

4.1 Normalization of states

Let us denote by |∅〉 the complete (uncut) folded string dual, i.e.

|∅〉 ≡
J/2
∏

i=−J/2

|−→n i〉 (4.3)

with

|−→n i〉 = cos θ

(

i

J

)

| ↑〉 + sin θ

(

i

J

)

| ↓〉, −J

2
< i <

J

2
, (4.4)

and with θ(x) the function given in equation (3.10). Furthermore, let us denote by

|x1, . . . , xl〉 the state obtained from (4.3) by cutting it vertically at the points x1, x2, . . . xl,

(see figure 3)

|x1, · · · , xl〉 ≡
∣

∣

∣

∣

∣

∣

x1 J
∏

i=−J/4

−→n i

x1 J
∏

i=−J/4

−→n (x1−
1

4
)J−i

〉

⊗

∣

∣

∣

∣

∣

∣

x2 J
∏

k=x1 J+1

−→n i

x2 J
∏

k=x1 J+1

−→n (x1+x2) J+1−i

〉

⊗

· · · ⊗

∣

∣

∣

∣

∣

∣

J/4
∏

k=xl J+1

−→n i

J/4
∏

k=xl J+1

−→n (xl+
1

4
) J+1−i

〉

, (4.5)

where

−1

4
< xi <

1

4
, l ≪ J, xj+1 − xj ∼ O(J). (4.6)
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Figure 3: A cut state |x1, · · · , xl〉.

In order to determine the norm of such a state, we first consider a single piece of string,

extending between the points x and y and compute the inner product 〈 | 〉 between this

piece and the piece which appears from it by shifting each of its coherent state vectors a

distance δ.

Ax,y,δ ≡ 〈
y J
∏

i=x J

−→n i−δ J |
y J
∏

i=x J

−→n i〉. =

(y−x) J
∏

i=0

〈−→n (x−δ) J+i | −→n x J+i〉. (4.7)

For fixed δ, it is clear that Ax,y,δ goes exponentially to zero as J goes to infinity. It is

therefore sufficient to study the behavior of Ax,y,δ for small δ:

Ax,y,δ ≈ exp

[

J

∫ y

x
log [cos [θ(z − δ) − θ(z)]] dz

]

≈ exp

[

−J
δ2

2

∫ y

x
θ′(z)2 dz

]

≈ exp

[

−J
δ2

2
Ex,y

]

, (4.8)

where Ex,y is given by

Ex,y ≡
∫ y

x
θ′(z)2 dz (4.9)

= 4K(m)

(

E [am (4K y|m)] − E [am (4K x|m)] − 4K(m) (1 − m) (y − x)

)

.

Notice that the planar energy of the folded string stretching between x and y is 2Ex,y and

in particular by definition E0 = E− 1

2
, 1
2

. It is then easy to find the square of the norm of the

string with no cuts at leading order in J by integrating over all possible3 δ:

〈〈 ∅|∅ 〉〉 = J2

∫ 1

2

− 1

2

exp

[

−J
E0

2
δ2

]

dδ = J

√

2π J

E0
. (4.10)

One of the factors of J comes from the fact that one can simultaneously make the same

cyclic translation of the bra and the ket without changing anything. The second factor

of J comes from the summation over nontrivial relative translations, and the substitution

3Since we assume that xj+1 − xj ∼ O(J) , the integration range of such a Gaussian integral can always

be taken to be ]−∞, +∞ [ when J → ∞.
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|a〉 |b〉

|c〉 |d〉

Figure 4: Possible joinings of two bits. Sites at the squares (circles) are linked after joining and

then antisymmetrized.

Figure 5: Overlaps between the bra 〈∅| (dotted lines) and the ket |a〉 (continuous lines). Arguments

for θ(x) are given at the relevant points. More precisely, the bra reads 〈I ′ II ′ III ′ IV ′| and the ket

|I II III IV 〉: in this figure, it is the function θ(x) which is continuous along the loop while the

sequence inside the ket is discontinuous.

of a continuous integral for the discrete sum in the large J limit. For each smaller string

in (4.5), one will get a similar factor so that

〈〈x1, x2, · · · , xl|x1, x2, · · · , xl〉〉 =

l
∏

i=0

li J (π J)
1

2

√

Exi,xi+1

, (4.11)

where x0 ≡ −1
4 , xl+1 ≡ 1

4 and li ≡ 2 (xi+1 − xi).

Here, we neglected the contributions coming from the “corners” of the string pieces

where the overlap is not anymore between θ(z − δ) and θ(z) as in (4.8). This is justified

because the relevant shifts δ J are much smaller than the length of the pieces we consider.

4.2 Matrix elements for string joining

We compute in this section the matrix element 〈〈∅|HNP|x〉〉. To begin with we consider

non-cyclic states.

There are in total four ways to join a two-piece state, giving rise to the four different

states |a〉, |b〉, |c〉 and |d〉 as shown in figure 4. The eventual use of the cyclic states | 〉〉
is essential here since the notion of the endpoint of the string becomes ambiguous. By

reflection symmetry, states |a〉 and |c〉 give the same expectation values, and so do states

|b〉 and |d〉. We will start with state |a〉. The corresponding overlaps are shown in figure 5.
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As in the previous section, we denote by δ the shift given to 〈∅| and by 〈I ′δ|, 〈II ′δ|,
〈III ′δ|, 〈IV ′

δ | its corresponding δ-shifted pieces (see figure 5). We also define the planar

energies of the first and second spin chain bits respectively by

E1 ≡ E− 1

2
−x,x = 2 E− 1

4
,x and E2 ≡ Ex, 1

2
−x = 2 Ex, 1

4

.

The identity E0 = E1 + E2 is satisfied by construction. First, let us assume that β ≥ α. We

have

〈〈∅|a〉〉 =
∑

δ

Fα,β,δ 〈I ′δ|I〉 〈II ′δ |II〉 〈III ′δ |III〉 〈IV ′
δ |IV 〉 ,

where anti-symmetrization effects at the joining sites are taken into account through the

Fα,β,δ factor.

In order to do the computation, we expand as follows

log [cos [θ(z − ǫ) − θ(z)]] = −ǫ2

2
θ′(z)2 +

ǫ3

2
θ′(z)θ′′(z) + O(ǫ4), (4.12)

and make use of the identities (3.12) for θ(z). It is important to stress that the expansion

we will use for the integrands strongly depends on the range of integration. For long range

integrations, e.g
∫ x
− 1

2
−x f(z, x, α, β, δ)dz, we expand for small α, β, δ’s only. For short range

integrations, e.g
∫ β
0 f(z, x, α, β, δ)dz, we also expand for small z’s.

One then gets

〈I ′δ|I〉 = 〈
(x−α) J

∏

i=(− 1

2
−x) J

−→n i−δ J ,

(x−α) J
∏

i=(− 1

2
−x) J

−→n i〉

≈ exp

[

J

∫ x−α

− 1

2
−x

log [cos [θ(z − δ) − θ(z)]] dz

]

≈ exp

[

J

∫ x

− 1

2
−x

(

−δ2

2
θ′(z)2 +

δ3

2
θ′(z)θ′′(z)

)

dz + J
δ2α

2
θ′(x)2

]

≈ exp

[

−1

2
E1 J δ2 + J

δ2α

2
θ′(x)2

]

, (4.13)

〈II ′δ|II〉 = 〈
β J
∏

i=0

−→n (x+β−α−δ) J−i ,

β J
∏

i=0

−→n x J+i]〉

≈ exp

[

−1

2
θ′(x)2 J

∫ β

0
(2 z + α − β + δ)2dz

]

≈ exp

[

−1

6
J β

(

β2 + 3 (α + δ)2
)

θ′ (x)2
]

, (4.14)

〈III ′δ|III〉 = 〈
( 1

2
−x−β) J
∏

i=x J

−→n (β−α−δ) J+i ,

( 1

2
−x−β)J
∏

i=x J

−→n i〉

≈ exp

[

J

∫ 1

2
−x

x

(

−(β − α − δ)2

2
θ′(z)2 +

(β − α − δ)3

2
θ′(z)θ′′(z)

)

dz. (4.15)

+J
(β − α − δ)2β

2
θ′

(

1

2
− x

)2
]
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≈ exp

[

−1

2
J (β − α − δ)2 E2 + J

(β − α − δ)2 β

2
θ′(x)2

]

, (4.16)

〈IV ′
δ |IV 〉 = 〈

α J
∏

i=0

−→n (x+δ) J+i,

α J
∏

i=0

−→n x J−i〉

≈ exp

[

−1

2
θ′(x)2 J

∫ α

0
(2 z + δ)2 dz

]

≈ exp

[

−1

6
J α

(

4α2 + 6α δ + 3 δ2
)

θ′ (x)2
]

. (4.17)

The four overlaps in total give the contribution

exp

[

−1

2
E1 J δ2 − 1

2
E2 J (β − α − δ)2

−1

3
J θ′(x)2

(

−α3 + 3α2 β + 2β3 − 3
(

β2 + α2
)

(β − α − δ)
)

]

,

and one can see that the dominant region will be around δ ≈ 0 and β ≈ α, so that the

leading term in 1
J will be given by taking the following approximation for the exponential:

exp

[

−1

2
E1 J δ2 − 1

2
E2 J (β − α)2 − 4

3
J α3 θ′(x)2

]

.

We should now compute Fα,β,δ near these values of α, β and δ. One gets4

Fα,α,0 =
〈−→n (x−α−δ) J ,−→n (x−α) J

〉 〈−→n (x−α−δ) J+1 ,−→n (x+β) J

〉

×
〈−→n (x+α+δ) J+1 ,−→n (x+β) J+1

〉 〈−→n (x+α+δ) J ,−→n (x−α) J+1

〉

∣

∣

∣

∣

∣δ = 0

β = α

≈ 4

J
α θ′(x)2 . (4.18)

The case α > β gives the same result up to the exchange α ↔ β. Furthermore, translating

the result to cyclic states implies multiplying by l1 l2 J2. Finally, using the normalization

factor N =
(√

2 π J
E0

l0 J
)

1

2
(√

2 π J
E1

l1 J
)

1

2
(√

2 π J
E2

l2 J
)

1

2

, one then gets at leading order

in 1
J :

∑

α,β

〈〈∅|a〉〉 ≈ 2

N
4

J
θ′(x)2J5 l1 l2

∫ ∞

0
dβ

∫ β

0
dα

∫ ∞

−∞
dδ e−

1

2
E1 J δ2− 1

2
E2 J (β−α)2 − 4

3
J α3 θ′(x)2 α

≈ 4Γ
(

2
3

)

31/3
K2/3 m1/3 cn (4K x|m)2/3

(

l1 l2
l0

)1/2 (

2π E0

E1 E2

)
1

4

J1/12 . (4.19)

Note that although β should be in the interval [0, 1
4 − x] and δ in the interval [−1

2 , 1
2 ], in-

tegrating in both cases till infinity will not change the leading 1
J behavior as the integrand

converges exponentially to zero for αJ1/3 ≫ 1, β J1/3 ≫ 1 and δ J1/2 ≫ 1.

4We use the notation f(A, B) g(C, D) = (f(A, B) − f(B, A)) g(C,D) + f(A, B) (g(C,D) − g(D, C)).
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A similar computation shows that 〈〈∅|b〉〉 and 〈〈∅|d〉〉 are of order J−1/4 and therefore

can be neglected compared to the J1/12 behavior found here. Thus, one obtains at leading

order in 1
J

〈〈∅|HNP|x〉〉 =
8Γ

(

2
3

)

31/3
K2/3 m1/3 cn (4K x|m)2/3

(

l1 l2
l0

)1/2 (

2π E0

E1 E2

)
1

4

J1/12 . (4.20)

It is straightforward to generalize this result to an arbitrary number of cuts where the

joining takes place at position xi. It is in order to facilitate this generalization that we

have explicitly kept the parameter l0 although in our case we have l0 = 1. We observe the

occurrence of the factor (E1 E2)
−1/4 which diverges when x approaches the endpoints of the

string. In this situation we can thus not trust the semi-classical analysis (and hence the

overall J-scaling).

4.3 Matrix elements for string splitting

From the calculations in the last section, we learn which approximations we are allowed

to do in order to keep only the leading order in 1
J . First, the terms that arise from the

cyclicity of the traces are long range terms: they appear through δ-shifts over a whole piece

of spin chain and consequently will give in the exponential a square term times minus the

planar energy of the considered piece, times J . This is what happened in equations (4.13)

and (4.16). Conversely, terms which are integrated on short intervals will appear in the

exponential starting at the cubic order (see equations (4.14) and (4.17)). This allows for

the following approximations that will not change the leading 1
J term after all integrations:

1. When computing overlaps over long range parts, it is not necessary to take into

account small parameters at the endpoints of the integration. For example, taking
∫ x
− 1

2
−x dz instead of

∫ x−α
− 1

2
−x

dz in (4.13) would not have changed the final result.

2. When computing overlaps over short range parts, one can do as if the shifts appearing

in the long range terms were equal to zero.

We can now compute expectation values such as 〈〈x|HNP|∅〉〉. HNP |∅〉 will give a lot of

possible double-chain states. Only the ones with lengths equal to those of |x〉, i.e. states

with length (1
2 +2x)J and length (1

2 −2x)J , will contribute. All these contributing states

can be characterized by a value γ J expressing how far the cut took place from the straight

cut between sites xJ and sites (1
2 − x)J (see figure 6). Let us denote them |{x, γ}〉. The

following identity holds:

〈〈x|HNP|∅〉〉 =

J
2

∑

i=−J
2

〈〈x|{x,
i

J
}〉〉 .

Overlaps for 〈x|{x, i
J }〉 are shown in figure 7. In order to go to the full cyclic scalar product,

one should then add two arbitrary shifts δ and δ′ for each piece of 〈x| as well as one for

|∅〉. However, the effect of the latter is simply the multiplication by the factor l0 J .
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Figure 6: A state |{x, γ}〉. Sites at the squares are antisymmetrised, as sites at the circles. The

spin chain was cut between sites where θ takes the value θ(x + γ) and θ(x − γ).

Figure 7: Overlaps between 〈x| (dotted lines) and |{x, γ}〉 (continuous lines). Arguments for

θ(x) are given at the relevant points. More precisely, 〈x| reads 〈I ′ II ′| 〈 III ′ IV ′| while |{x, γ}〉 is

equal to |I II〉 |III IV 〉. As in figure 5, it is the function θ(x) which is continuous along the loop.

Possible shifts δ and δ′ for each piece of 〈x| were put to 0 for simplicity.

We thus have

〈〈x|HNP|∅〉〉 = l0J
∑

γ,δ,δ′

Fγ,δ,δ′ 〈I ′δ|I〉 〈II ′δ |II〉 〈III ′δ′ |III〉 〈IV ′
δ′ |IV 〉 ,

where Fγ,δ,δ is the anti-symmetrization factor and 〈I ′δ|, 〈II ′δ|,
〈

III ′δ′
∣

∣,
〈

IV ′
δ′

∣

∣ are the δ (δ′)

shifted pieces of 〈x|.
Using the approximations we presented at the beginning of this section, we have, for

γ > 0,

〈I ′δ|I〉 ≈ 〈
x J
∏

i=(− 1

2
−x) J

−→n i−δ J ,

J
∏

i=(− 1

2
−x) J

−→n i〉

≈ exp

[

−1

2
E1 J δ2

]

, (4.21)

〈II ′δ|II〉 ≈ 〈
γ J
∏

i=0

−→n x J−i ,

γ J
∏

i=0

−→n x J+i〉

≈ exp

[

−2 θ′(x)2 J

∫ γ

0
z2dz

]

≈ exp

[

−2

3
J γ3 θ′ (x)2

]

, (4.22)
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〈III ′δ′ |III〉 ≈ 〈
( 1

2
−x) J
∏

i=x J

−→n i−δ′ J ,

( 1

2
−x) J
∏

i=x J

−→n i〉

≈ exp

[

−1

2
J δ′

2 E2

]

, (4.23)

〈IV ′
δ |IV 〉 ≈ 〈

γ J
∏

i=0

−→n x J+i ,

γ J
∏

i=0

−→n x J−i〉

≈ exp

[

−2 θ′(x)2 J

∫ γ

0
z2dz

]

≈ exp

[

−2

3
J γ3 θ′ (x)2

]

. (4.24)

The overlaps therefore give the contribution

exp

[

−1

2
E1 J δ2 − 1

2
E2 J δ′

2 − 4

3
θ′(x)2 J γ3

]

.

Computing Fγ,δ,δ′ around δ = δ′ = γ = 0, one gets

Fγ,0,0 =
〈−→n (x−γ) J+1 ,−→n (x+γ) J

〉 〈−→n (x−γ) J ,−→n (x−γ) J

〉

×
〈−→n (x+γ) J ,−→n (x−γ) J+1

〉 〈−→n (x+γ) J+1 ,−→n (x+γ) J+1

〉

≈ 4

J
γ θ′(x)2 . (4.25)

In the γ < 0 case, extra minus signs appear so that one can use the same results by taking

the absolute value of γ instead. Using as normalization the factor N =
(√

2 π J
E0

l0 J
)

1

2

(√

2 π J
E1

l1 J
)

1

2
(√

2 π J
E2

l2 J
)

1

2

, this leads to

〈〈x|HNP|∅〉〉 ≈ 1

N
4

J
θ′(x)2 l0 J4

∫ ∞

−∞
dγ

∫ ∞

−∞
dδ

∫ ∞

−∞
dδ′ e−

1

2
E1 J δ2− 1

2
E2 J δ′2 − 4

3
J |γ|3 θ′(x)2 |γ|

≈ 8Γ
(

2
3

)

31/3
K2/3 m1/3 cn (4K x|m)2/3

(

l0
l1 l2

)1/2 (

2π E0

E1 E2

) 1

4

J−11/12. (4.26)

This result can be immediately extended to states which were already cut before the action

of the Hamiltonian. We note that the non-planar dilatation operator is non-hermitian. A

similar situation was encountered in previous analyses of the non-planar corrections to

energies of BMN states [19, 10]. There the non-planar dilatation operator was related to

its hermitian conjugate by a similarity transformation. The same is the case here.

5. A solvable toy model

By construction the vertically cut multi-string states studied above are degenerate in planar

energy with the complete Frolov-Tseytlin string. Let us now consider a toy model of a

– 13 –



J
H
E
P
1
2
(
2
0
0
7
)
0
6
9

folded string for which the vertically cut states exhaust the space of states degenerate

in energy with the uncut string. Furthermore, let us assume that the matrix elements of

HNP for string splitting and string joining depend only on the point of splitting and joining.

Determining the first non-planar correction to the string energy under these assumptions

amounts to diagonalizing the non-planar dilatation operator in the subspace of vertically

cut states which of course implies diagonalizing an infinite dimensional matrix in the limit

J → ∞. This problem can easily be solved, however. Let us denote by |i, j, k, · · · 〉 the

state corresponding to the string cut at positions i, j, k, · · · and by Xl the matrix element

corresponding to an additional cut or joining taking place at position l. To illustrate the

solution, we consider as an example only three possible sites where a cut/joining can take

place. Then in the base {|∅〉 , |1〉 , |2〉 , |1, 2〉 , |3〉 , |1, 3〉 , |2, 3〉 , |1, 2, 3〉}, the matrix we have

to diagonalize is given by

M =





























0 X1 X2 0 X3 0 0 0

X1 0 0 X2 0 X3 0 0

X2 0 0 X1 0 0 X3 0

0 X2 X1 0 0 0 0 X3

X3 0 0 0 0 X1 X2 0

0 X3 0 0 X1 0 0 X2

0 0 X3 0 X2 0 0 X1

0 0 0 X3 0 X2 X1 0





























whose eigenvalues µ are simply all possible sum and differences between the Xi’s:

µ = ±X1 ±X2 ±X3 .

In the case of J different sites, the eigenvalues are distributed in a quasi-continuum between

energies ±J

∫ 1

4

− 1

4

Xx dx. In our case we can arrange by means of a similarity transformation

that all our matrix elements scale as J−5/12. Therefore, a rough scaling argument gives

∆E ≈ λ

N

J

2
X0 ∼ λ

J7/12

N
. (5.1)

Now if one, again naively, assumes BMN-like scaling for the energy of spinning strings one

needs that the genus one contribution compared to the genus zero one has an additional

factor of J2

N which leads to the expectation ∆E ∼ J
N . It is of course not known to which

extent BMN scaling beyond the planar limit should hold for spinning strings. One knows

from the analysis of [20, 21] and the field theoretical computations of [22] that BMN scaling

for few-impurity operators breaks down already at the planar level but only at order four

in λ. In the true picture of string splitting we can not claim that the straight cut states

exhaust the space of eigenstates degenerate in energy with the folded string.5 One could

argue that one should in fact replace Xx of the toy model by some integral over matrix

5As mentioned earlier the straight cut states are also not exact eigenstates but only eigenstates up to

terms of order 1

J
.
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elements involving skew cut states close to the vertically cut ones and that this could give

rise to additional factors of J . We have not been able to make a quantitative estimate

of this effect, but we find it unlikely that such an integration could provide the “missing”

factor J5/12. Rather the low power of J in eq. (5.1) seems to suggest that the process of

semi-classical string splitting and joining is not of importance for the genus one energy

shift, cf. section 6.

6. Discussion

Our calculation shows that for long strings a nonzero contribution to the splitting matrix

element comes only from strings which are almost on top of each other, cf. eq. (4.12) and

subsequent calculations. This is somewhat reminiscent of the interaction vertex between

strings in light cone string field theory:

V (Xi
0(σ),Xi

1(σ),Xi
2(σ)) = (6.1)

∫

ds0ds1ds2 δ(J0 − J1 − J2) ×
∏

∆(Xi
1(σ + s1) − Xi

0(σ + s0))∆(Xi
2(σ + s2) − Xi

0(σ + s0 + J1/J0)).

In the above formula the si are direct analogues of cyclic translations in our definition

of states, while the functional delta functions are analogues of the property that we have

found namely that in order for the matrix element to be nonzero the angles defining the

coherent states have to be within J−1/2. However the detailed calculations in sections 4.2

and 4.3 show that more nontrivial J−1/3 factors may also appear. In addition we saw that

the HNP operator gives an effective additional operator inserted at the interaction point,

cf. eqn (4.25). This is not unexpected since such operators appear generically in superstring

light cone SFT (see e.g. [23]). However, due to the fact that we really can deal only with

classical states we refrain from making any more quantitative comparison.

Our crude estimate of the order of magnitude of the genus one energy shift due to semi-

classical string joining and splitting leads to the energy scaling with an unexpectedly small

power of J . An interpretation of this result may be that the contribution to the energy shift

coming from such semi-classical string processes is simply quite small. In fact for generic

macroscopic rotating strings (i.e. not ‘folded’ ones) the contribution of string splitting into

classical states would be very strongly suppressed. It is much more probable that the

dominant non-planar contribution would come from small strings which would split off

from the rotating string and which would be reabsorbed shortly after. Unfortunately the

process of small strings splitting off is beyond the reach of the semi-classical coherent state

methods which we were using.
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